Search results

Search for "Ce-doped ZnO" in Full Text gives 3 result(s) in Beilstein Journal of Nanotechnology.

A highly efficient porous rod-like Ce-doped ZnO photocatalyst for the degradation of dye contaminants in water

  • Binjing Hu,
  • Qiang Sun,
  • Chengyi Zuo,
  • Yunxin Pei,
  • Siwei Yang,
  • Hui Zheng and
  • Fangming Liu

Beilstein J. Nanotechnol. 2019, 10, 1157–1165, doi:10.3762/bjnano.10.115

Graphical Abstract
  • , Parkville, Victoria 3010, Australia ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), School of Science, RMIT University, Melbourne, VIC 3001, Australia 10.3762/bjnano.10.115 Abstract A mild and simple method was developed to synthesize a highly efficient photocatalyst comprised of Ce-doped ZnO
  • microstructure. The computational results showed that the dipole-like field covers the entire surface of the rod-like Ce-doped ZnO photocatalyst and is present over the entire range of wavelengths considered. The optimum degradation conditions were determined by orthogonal tests and range analysis, including the
  • ) = 10 mg/L, concentration (catalyst) = 0.7 g/L, pH 9.0 and T = 50 °C. These optimum conditions supply a helpful reference for large-scale wastewater degradation containing the common water contaminant RhB. Keywords: Ce-doped ZnO; photocatalyst; rhodamine B; solar degradation; surface shape
PDF
Album
Full Research Paper
Published 03 Jun 2019

Electrospun one-dimensional nanostructures: a new horizon for gas sensing materials

  • Muhammad Imran,
  • Nunzio Motta and
  • Mahnaz Shafiei

Beilstein J. Nanotechnol. 2018, 9, 2128–2170, doi:10.3762/bjnano.9.202

Graphical Abstract
  • , and CO. ZnO hollow NFs functionalized by rare earth metals, such as Ce, show enhanced acetone sensing [193]. The Ce ion occurs either as Ce4+ and Ce3+ which is effective for improving the performance of chemical sensors. The surface morphology of Ce-doped ZnO HNFs is concave–convex and porous with an
  • significantly improves sensing performance. The highest response of Ce-doped ZnO HNFs (75.04/100 ppm) and (71.2/500 ppm) toward acetone is measured at an optimal operating temperature of 260 °C and 230 °C, respectively with a stability of over 40 days and retention of 96% of their initial performance
PDF
Album
Supp Info
Review
Published 13 Aug 2018

High performance Ce-doped ZnO nanorods for sunlight-driven photocatalysis

  • Bilel Chouchene,
  • Tahar Ben Chaabane,
  • Lavinia Balan,
  • Emilien Girot,
  • Kevin Mozet,
  • Ghouti Medjahdi and
  • Raphaël Schneider

Beilstein J. Nanotechnol. 2016, 7, 1338–1349, doi:10.3762/bjnano.7.125

Graphical Abstract
  • , BP 70239, 54506 Vandoeuvre-lès-Nancy Cedex, France 10.3762/bjnano.7.125 Abstract Ce-doped ZnO (ZnO:Ce) nanorods have been prepared through a solvothermal method and the effects of Ce-doping on the structural, optical and electronic properties of ZnO rods were studied. ZnO:Ce rods were characterized
  • by XRD, SEM, TEM, XPS, BET, DRS and Raman spectroscopy. 5% Ce-doped ZnO rods with an average length of 130 nm and a diameter of 23 nm exhibit the highest photocatalytic activity for the degradation of the Orange II dye under solar light irradiation. The high photocatalytic activity is ascribed to the
  • crystalline structure by Ce doping and the ability of this element to trap photogenerated charge carriers, Ce-doped ZnO (ZnO:Ce) particles have also gained high interest for photocatalysis. Recently, a few Ce3+- or Ce4+-doped ZnO photocatalyst containing large particles of spherical or needle morphology have
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2016
Other Beilstein-Institut Open Science Activities